教育巴巴 > 高中教案 > 数学教案 >

高考数学教案集合

时间: 新华 数学教案

好的教案应该有及时的教学反思,对本次教学过程中的优缺点进行总结和反思,为今后的教学提供经验和启示。怎样才能写好高考数学教案集合?这里给大家提供高考数学教案集合,方便大家学习。

高考数学教案集合篇1

教学目的:

1、使理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。

2、了解线段垂直平分线的轨迹问题。

3、结合教学内容培养学生的动作、形象和抽象。

教学重点:

线段的垂直平分线性质定理及逆定理的引入证明及运用。

教学难点:

线段的垂直平分线性质定理及逆定理的关系。

教学关键:

1、垂直平分线上所有的点和线段两端点的距离相等。

2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。

教具:

投影仪及投影胶片。

教学过程:

一、提问

1、角平分线的性质定理及逆定理是什么?

2、怎样做一条线段的垂直平分线?

二、新课

1、请同学们在练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。

2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?

通过学生的观察、分析得出结果PA=PB,再取一点P试一试仍然有PA=PB,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。

定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

这个命题,是我们通过作图、观察、猜想得到的`,还得在理论上加以证明是真命题才能做为定理。

已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上

求证:PA=PB

如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB

证明:∵PC⊥AB(已知)

∴∠PCA=∠PCB(垂直的定义)

在ΔPCA和ΔPCB中

∴ΔPCA≌ΔPCB(SAS)

即:PA=PB(全等三角形的对应边相等)。

反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?

过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)

∴EF是等腰三角型ΔPAB的顶角平分线

∴EF是AB的垂直平分线(等腰三角形三线合一性质)

∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。

线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

三、举例(用幻灯展示)

例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。

证明:∵点P在线段AB的垂直平分线上

∴PA=PB

同理PB=PC

∴PA=PB=PC

由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。

四、小结

正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。

高考数学教案集合篇2

一、设计理念

注重发展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造”过程。我们应积极创设条件,让学生体验数学发现和创造的历程,发展他们的创新意识。

注重提高学生数学思维能力。课堂教学是促进学生数学思维能力发展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。

注重学生多层次的发展。在问题解决的探究过程中应体现“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验基础之上,而学生的基础知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到发展。

注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。

另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。

二、教材分析

1.在教材中的地位与作用

幂函数在老教材中出现过,后来又删,现在又重新出现,当然两次在教材中的地位不一样,这次分量较轻,只要一课时,所以控制难度是值得注意的地方。幂函数选自必修1第2章第4节,是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,进入高中以来遇到的第三种特殊函数,是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象(),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

2.教材编排与课时安排

幂函数的教学按照《教参》要求一个课时完成。通过这一课时学习幂函数的定义,图像及性质,从而进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为后面学习其他函数作好准备。

三、学习目标与任务

依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:

【知识目标】

1了解幂函数的定义;

2会画常见幂函数的图象,掌握幂函数的图象和性质;

3初步学会运用幂函数解决问题,进一步体会数形结合的思想。

【技能目标】

1通过引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;

2通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;

3对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;

4运用性质解决问题时,进一步强化数形结合思想。

【情感目标】

1通过生活实例引出幂函数概念,体会生活中处处有数学,激发学生的学习兴趣;

2通过本节课的学习,进一步加深研究函数的规律和方法;提高学习能力;

3养成积极主动,勇于探索,不断创新的学习习惯和品质;

4树立学科学,爱科学,用科学的精神。

四、学习重点、难点

重点:幂函数的定义、图像、性质及运用

难点:幂函数图象和性质的发现过程

五、学习者特征分析

从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

六、教法分析

学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

七、学习环境选择与学习资源设计

【学习环境选择】

1Web教室;2校园网;3Internet。

【学习资源类型】

1课件;2专题学习网站;3案例库;4题库

【学习资源内容简要说明】

这堂课的学习资源主要是《幂函数》专题学习网站,网站的内容有:学习主题、学习目标、学法指导、准备知识、重点难点、学习资源、练习测试、展示讨论、学习拓展。

八、学习情境创设

【学习情境类型】

1真实情境;2问题性情境;3虚拟情境;4其他

【学习情境设计】

课堂上创设了学生熟悉的生活情景:购买水果、骑车等生活情境图;计算正方体的面积与体积的问题情境图;还有发挥互联网的交互功能,向学生提供交流、展示作品的空间;通过相关学习资源的链接,让学生在丰富的互联网的资源中学习、探究、应用“幂函数”。

九、学习活动组织形式选择

【自主学习设计】

1抛锚式

(1)准备知识:

写出下列y关于x的函数解析式:

①正方形边长x、面积y

②正方体棱长x、体积y

③正方形面积x、边长y

④某人骑车x秒内匀速前进了1km,骑车速度为y

⑤一物体位移y与位移时间x,速度1m/s

(2)使用资源:

网页上的“准备知识”;网络图像:网络练习

(3)学生活动

自主进入网站课件浏览准备知识,小组讨论复习所学知识。采用网络作为评价的手段。

(4)教师活动

巡视课堂,参与学生的讨论。

2支架式

(1)相应内容

了解本节课的“学习主题”、“学习目标”、提供“学法指导”。

(2)使用资源

网页上的“学习主题”、“学习目标”、“学法指导”和“重点难点”。

(3)学生活动

自主进入网站浏览,根据网页上的例子归纳出幂函数的一般形式,小组合作学习,互帮互助,采取网络评价。

(4)教师活动

巡视课堂,指导学生根据例子总结出幂函数的定义及其一般形式,引导学生应该注意的一些地方,并出题练习,巩固定义。

3随机进入式

(1)相应内容

浏览学习资源、测试

(2)使用资源

网页上的“学习资源”:包括本地资源和远程链接、搜索引擎、实验工具,其中本地资源有:“学习课件”、“课外阅读、应用例谈”等栏目。还有网络练习。

(3)学生活动

自由选择喜欢的、重要的内容浏览,独立练习,然后小组交流,采取网络评价。

(4)教师活动

巡视指导,小结,评价。

【协作学习设计】

1伙伴

(1)内容:根据几个问题情境,总结出幂函数的一般形式。

(2)使用资源:网页上的“重点难点”以及网络课件。

(3)分组情况:六人一小组。

(4)学生活动:根据网页上的例子总结出幂函数的一般形式;小组合作学习,互相帮组;网络评价。

(5)教师活动;巡视课堂,指导学生根据例子总结出幂函数的一般形式。

2协同

(1)内容:根据幂函数的图像,总结出幂函数的性质,帮助识记这些性质。

(2)使用资源;网路课件。

(3)分组情况:六人一小组。

(4)学生活动:根据幂函数的图像找出幂函数的特有性质;小组合作学习,互帮互助。

(5)教师活动;巡视课堂,指导学生根据函数图像发现幂函数的性质。

3辩论

(1)内容:幂函数的一般形式以及幂函数的性质

(2)使用资源:网络课件。

(3)分组情况:六人一小组。

(4)学生活动:根据讨论总结出幂函数的一般形式以及其性质;互相发表意见,也可辩论,说出自己的想法。

(5)教师活动;组织学生汇报讨论的结果。

【教学结流程设计】SHAPEMERGEFORMAT

SHAPEMERGEFORMAT

【图符说明】

SHAPEMERGEFORMAT

十、教学过程

1课前活动

(1)教师活动:同学们,上课前我们先来看两个实际问题:

①如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p是多少?

高考数学教案集合篇3

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα-β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题.

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1.两角和的余弦公式是三角函数一章和、差、倍公式系列的基础.其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2.通过下面各组数的值的比较:①cos(30°-90°)与cos30°-cos90°②sin(30°+60°)和sin30°+sin60°.我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ.但不排除一些特例,如sin(0+α)=sin0+sinα=sinα.

3.当α、β中有一个是的整数倍时,应首选诱导公式进行变形.注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例.

4.关于公式的正用、逆用及变用

高考数学教案集合篇4

一、说教材

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

2.从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

3.学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

4.重点、难点

教学重点:公式的推导、公式的特点和公式的运用.

教学难点:公式的推导方法和公式的灵活运用.

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

二、说目标

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

三、说过程

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1.创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

2.师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

3.类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

4.讨论交流,延伸拓展

高考数学教案集合篇5

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射,把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

牐牐1)在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:__

这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为,从这个符号中也能看到映射是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

高考数学教案集合篇6

1、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高考数学教案集合篇7

内容分析:

1、集合是中学数学的一个重要的基本概念

在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础

例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明

然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念

学习引言是引发学生的学习兴趣,使学生认识学习本章的意义

本节课的教学重点是集合的基本概念。

集合是集合论中的原始的、不定义的概念

在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识

教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集

”这句话,只是对集合概念的描述性说明。

教学过程:

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

(2)正整数集:非负整数集内排除0的集,记作N_或N+,N_={1,2,3,…}

(3)整数集:全体整数的集合,记作Z,Z={0,±1,±2,…}

(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集,记作N_或N+

Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写。

高考数学教案集合篇8

“简单随机抽样“教学设计说明

一、本课教学内容的本质、地位、作用分析

(一)教材所处的地位和前后联系

本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

(二)教学重点

①简单随机抽样的概念,

②常用实施方法:抽签法和随机数表法

(三)教学难点

对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.

二、教学目标分析

1、知识目标

(1)理解并掌握简单随机抽样的概念、特点和步骤.

(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.

2、能力目标

(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.

(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学问题的现象,加强观察问题、分析问题和解决问题的能力培养.

3、情感、态度目标

(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.

(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.

三、教学问题诊断

本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

1、创设情境,揭示课题

用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题:如何收集数据?请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)

2、学法指导,研探新知

思考1:

从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?

一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?

思考2:

从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?

一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?

规律总结:

一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。.

3实际运用,巩固升华

简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?

高考数学教案集合篇9

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。——《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1、了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2、体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3、在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1、分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2、选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高考数学教案集合篇10

一)教材分析

(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用

难点:利用向量知识证明定理

(二)教学目标

(1)知识目标:

①要学生掌握正余弦定理的推导过程和内容;

②能够运用正余弦定理解三角形;

③了解向量知识的应用。

(2)能力目标:提高学生分析问题、解决问题的能力。

(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。

(三)教学过程

教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。

教学过程分如下几个环节:

教学过程课堂引入

1、定理推导

2、证明定理

3、总结定理

4、归纳小结

5、反馈练习

6、课堂总结、布置作业

具体教学过程如下:

(1)课堂引入:

正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?

(2)定理的推导。

首先提出问题:RtΔABC中可建立哪些边角关系?

目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:

①引导学生从SinA、SinB的表达式中发现联系。

②继续引导学生观察特点,有A边A角,B边B角;

③接着引导:能用C边C角表示吗?

④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?

发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。

这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。

第二步证明定理:

①用向量方法证明定理:学生不易想到,设计如下:

问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破

实践:师生共同完成锐角三角形中定理证明

独立:学生独立完成在钝角三角形中的证明

总结定理:师生共同对定理进行总结,再认识。

在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。

在定理总结之后,教师布置思考题:定理还有没有其他证法?

通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。

(3)例题设置。

例1△ABC中,已知c=10,A=45°,C=30°,求b.

(学生口答、教师板书)

设计意图:①加深对定理的认识;②提高解决实际问题的能力

例2△ABC中,a=20,b=28,A=40°,求B和C.

例3△ABC中,a=60,b=50,A=38°,求B和C.其中①两组解,②一组解

例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。

可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。

设计意图:

①增强学生对定理灵活运用的能力

②提高分析问题解决问题的能力

③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。

(4)归纳小结。

借助多媒体动态演示:图表

使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。

这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。

(5)反馈练习:

练习①△ABC中,已知a=60,b=48,A=36°

②△ABC中,已知a=19,b=29,A=4°

③△ABC中,已知a=60,b=48,A=92°

判断解的情况。

通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。

(6)课堂总结,布置作业。

高考数学教案集合篇11

一、教学内容分析:

本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析:

任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想

本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标

通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点

重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

六、教学过程设计

(一)知识准备、新课引入

提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示)a??

提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

(二)判定定理的探求过程

1、直观感知

提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

生1:例举日光灯与天花板,树立的电线杆与墙面。

生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

2、动手实践

教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

3、探究思考

(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:

①平面外一条线

②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线

③这两条直线平行

(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

4、归纳确认:(多媒体幻灯片演示)

直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

(三)定理运用,问题探究(多媒体幻灯片演示)

1、想一想:

(1)判断下列命题的真假?说明理由:

①如果一条直线不在平面内,则这条直线就与平面平行()

②过直线外一点可以作无数个平面与这条直线平行()

③一直线上有二个点到平面的距离相等,则这条直线与平面平行()

(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是()a、ab、a、c、a或a、d、a[学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]

2、作一作:

设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

3、证一证:

例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef平面bcd。

变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef平面bdd1b1分析:根据判定定理必须在平

面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。

思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。

思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。

[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]

4、练一练:

练习1:见课本6页练习1、2

练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn平面bce。

变式:若将练习2中m、n改为ac、bf分点且am=fn,试问结论仍成立吗?试证之。

[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]

(四)总结

先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。

2、定理的符号表示:ba?ab??简述:(内外)线线平行则线面平行

3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

七、教学反思

本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

103119