教育巴巴 > 高中教案 > 数学教案 >

数学高考复习教案大全

时间: 沐钦 数学教案

数学高考复习教案如何写?教师通过精心设计,将抽象问题具体化,将复杂问题简单化,充分调动学生学习数学的主动性,使学生由被动听课变为主动探索。下面是小编为大家带来的数学高考复习教案大全七篇,希望大家能够喜欢!

数学高考复习教案大全

数学高考复习教案大全(精选篇1)

一、总体设想:

本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:

1.了解向量的数量积的抽象根源。

2.了解平面的数量积的概念、向量的夹角

3.数量积与向量投影的关系及数量积的几何意义

4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算

三、重、难点:

【重点】1.平面向量数量积的概念和性质

2.平面向量数量积的运算律的探究和应用

【难点】平面向量数量积的应用

课时安排:

2课时

五、教学方案及其设计意图:

1.平面向量数量积的物理背景

平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W ,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。

平面向量数量积(内积)的定义

已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos(叫a与b的数量积,记作a(b,即有a(b = |a||b|cos(,(0≤θ≤π).

并规定0与任何向量的数量积为0.

零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a(b = |a||b|cos(无法得到,因此另外进行了规定。

3. 两个非零向量夹角的概念

已知非零向量a与b,作 =a, =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.

, 是记法, 是定义的实质――它是一个实数。按照推理,当 时,数量积为正数;当 时,数量积为零;当 时,数量积为负。

4.“投影”的概念

定义:|b|cos(叫做向量b在a方向上的投影。

投影也是一个数量,它的符号取决于角(的大小。当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 |b|;当( = 180(时投影为 (|b|. 因此投影可正、可负,还可为零。

根据数量积的定义,向量b在a方向上的投影也可以写成

注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。

5.向量的数量积的几何意义:

数量积a(b等于a的长度与b在a方向上投影|b|cos(的乘积.

向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分: 。此概念也以物体做功为基础给出。 是向量b在a的方向上的投影。

6.两个向量的数量积的性质:

设a、b为两个非零向量,则

(1) a(b ( a(b = 0;

(2)当a与b同向时,a(b = |a||b|;当a与b反向时,a(b = (|a||b|. 特别的a(a = |a|2或

(3)|a(b| ≤ |a||b|

(4) ,其中 为非零向量a和b的夹角。

例1. (1) 已知向量a ,b,满足 ,a与b的夹角为 ,则b在a上的投影为______

(2)若 , ,则a在b方向上投影为 _______

例2. 已知 , ,按下列条件求

数学高考复习教案大全(精选篇2)

古典概型

一、目标引领

1.理解随机事件和古典概率的概念?.

2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.

?重点及难点

重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.

?二、自学探究

在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.

三、合作交流

在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?

学生回答:

在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是 .

在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是 .

引入新的概念:

基本事件:我们把试验可能出现的结果叫做基本事件.

古典概率:把具有以下两个特点的概率模型叫做古典概率.

(1)一次试验所有的基本事件只有有限个.

例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.

(2)每个基本事件出现的可能性相等.

试验一和试验二其基本事件出现的可能性均相同.

随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.

随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.

必然事件:试验后必定出现的事件叫做必然事件,记作 .例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.

不可能事件:实验中不可能出现的事件叫做不可能事件,

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.

四、精讲点拨

例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?

解:有ab,ac,ad,bc,bd,cd.

例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?

答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.

数学高考复习教案大全(精选篇3)

课 题 古典概型 课 型 高一新授课 教学目标 理解古典概型及其概率计算公式,并能计算有关随机事件的概率 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 教学难点 如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 教学方法 导学式、启发式教学 教 具 多媒体辅助 教学过程 教学内容与教师活动 学生活动 设计意图

创设情境引出课题

问题1:考察两个试验:

(1)抛掷一枚质地均匀的硬币的试验;

(2)掷一颗质地均匀的骰子的试验。

问:在这两个试验中,可能的结果分别有哪些?

教师引导学生思考 问题1:学生思考结果且给出基本事件的特点1

问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。

问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考 问题2:学生归纳与总结, 问题2设计意图:通过举例,引出基本事件的特点2。 问题3:基本事件有什么特点?

教师加以引导与启发,利用基本事件的关系发现基本事件的特点 问题3:学生口答 问题3设计意图:提高学生概括总结能力 问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。

问题4:学生列举出基本事件。 问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

通过设疑引出概念

问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?

(2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。

问题1学生得到答案且深层次的考虑问题

问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性) 问题2学生观察和初步概括归纳古典概率模型及特征

问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。

问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么? 问题3学生互相交流,回答补充得到的答案 问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

例题分析加深理例题分析加深理

例2、在数学考试中单选题是常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结

例2学生思考、讨论、交流,说出看法

例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。

变式:假设我们现在将单选题改为不定项选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少

教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。 变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。 变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。

例3、 同时掷两个骰子,计算:(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。

教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。

例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式

例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

数学高考复习教案大全(精选篇4)

古典概型

学情分析

(二)教学目标

1. 知识与技能:

(1) 通过试验理解基本事件的概念和特点;

(2) 通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;

(3) 会求一些简单的古典概率问题。

2. 过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。

3. 情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(三)教学重、难点

重点:理解古典概型的概念,利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。

(四) 教学用具

多媒体课件,投影仪,硬币,骰子。

(五)教学过程

[情景设置]

[温故知新]

(1)回顾前几节课对概率求取的方法:大量重复试验。

(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?

试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?

定义:一次试验中可能出现的每一个结果称为一个基本事件。

思考:掷一枚质地均匀的骰子

(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗

(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?

掷一枚质地均匀的硬币

(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗

(2)“必然事件”包含哪几个基本事件?

基本事件的特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

二、古典概型

思考:从基本事件角度来看,上述两个试验有何共同特征?

古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;

(2)每个基本事件出现的可能性相等。

师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。

向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?

(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?

三、求解古典概型

思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?

(1) 基本事件的概率

试验1:掷硬币

P (“正面向上”)= P (“反面向上”)=

试验2:掷骰子

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为

(2)随机事件的概率

掷骰子试验中,记事件A为“出现点数小于3” ,事件B为“出现点数大于3”,如何求解P(A)与P(B)?

结论:古典概型中,若基本事件总数有n个,A事件所包含的基本事件个数为m,则

P(A)=

古典概型的概率计算公式:

[实战演练]

例1.标准化考试的选择题有单选和不定项选择两种类型。假设考生不会做,随机从A、B、C、D四个选项中选择正确的答案,请问哪种类型的选择题更容易答对?

分析:解决这个问题的关键在于本题什么情况下可以看成古典概型。如果考生掌握了所考察的部分或全部知识,这都不满足古典概型的第2个条件—等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才为古典概型。

数学高考复习教案大全(精选篇5)

一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五 板书设计

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

数学高考复习教案大全(精选篇6)

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

(4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。

组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。

解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).

三、教法设计

1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.

2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.

为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:

排列树图

由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

组合树图

由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).

从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.

学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.

3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.

对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.

4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是

这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.

对定理2,可启发学生从下面问题的讨论得出.从n个不同元素 , ,…, 里每次取出m个不同的元素( ),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有 的;  (3)在这些组合里,有多少个是含有 的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.

对于 ,和 一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.

教学设计示例

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .

根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

【例题示范 探求方法】

(教师活动)打出字幕,给出示范,指导训练.

[字幕]例1 列举从4个元素 中任取2个元素的所有组合.

例2 计算:(1) ;(2) .

(学生活动)板演、示范.

(教师活动)讲评并指出用两种方法计算例2的第2小题.

[字幕]例3 已知 ,求 的所有值.

(学生活动)思考分析.

解 首先,根据组合的定义,有

其次,由原不等式转化为

解得 ②

综合①、②,得 ,即

[点评]这是组合数公式的应用,关键是公式的选择.

设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

【反馈练习 学会应用】

(教师活动)给出练习,学生解答,教师点评.

[课堂练习]课本P99练习第2,5,6题.

[补充练习]

[字幕]1.计算:

2.已知 ,求 .

(学生活动)板演、解答.

设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

【点评矫正 交流提高】

(教师活动)依照学生的板演,给予指正并总结.

补充练习答案:

1.解:原式:

2.解:由题设得

整理化简得 ,

解之,得 或 (因 ,舍去),

所以 ,所求

[字幕]小结:

1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.

2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.

(学生活动)交流讨论,总结记录.

设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

作业参考答案

2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

探究活动

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

甲拿乙制作的贺卡时,则贺卡有3种分配方法.

甲拿丙制作的贺卡时,则贺卡有3种分配方法.

甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

数学高考复习教案大全(精选篇7)

一、教学目标

1、知识与技能

(1)理解对数的概念,了解对数与指数的关系;

(2)能够进行指数式与对数式的互化;

(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;

2、过程与方法

3、情感态度与价值观

(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析

分析、严谨认真的良好思维习惯和不断探求新知识的精神;

(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;

(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、

探索发现、科学论证的良好的数学思维品质、

二、教学重点、难点

教学重点

(1)对数的定义;

(2)指数式与对数式的互化;

教学难点

(1)对数概念的理解;

(2)对数性质的理解;

三、教学过程:

四、归纳总结:

1、对数的概念

一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

2、对数与指数的互化

ab=n?logan=b

3、对数的基本性质

负数和零没有对数;loga1=0;logaa=1对数恒等式:alogan=n;logaa=nn

五、课后作业

课后练习1、2、3、4

36753