2021七年级数学优质课教案

| 晓晴

作为一名初中数学教师,我们首先应该具有逻辑思维能力,并能够积极的寻找合适的方式,培养学生数学思维,树立学生利用数学思维解决实际问题的能力。今天小编在这给大家整理了一些2021七年级数学优质课教案,我们一起来看看吧!

2021七年级数学优质课教案1

教学目标

1、学生掌握方程的定义以及等式与方程的区别;

2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。

教学重点

检验方程的解的方法

教学难点

区分等式与方程;等式与恒等式;恒等式与方程。

版面设计

方程与方程的解

一、等式与恒等式:

二、方程与整式方程:

三、方程的解与方程的根:

教学设计

一、复习引入:

⑴猜年龄:

将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。

⑵找规律:

如果设小明的年龄为x岁,那么乘以2再减去5就是2x-5,所以得到方程(equation):2x-5=21

二、新课传授:

1.等式与恒等式:

①等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号=来表示相等关系的式子,叫做等式。

等式左边的式子叫做等式的左边;

等式右边的式子叫做等式的右边;

等式的一般形式是:A=B

②恒等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。

2.方程与整式方程:

①方程:

这种含有未知数的等式叫做方程。

②整式方程:

方程的两边都是整式时,称为整式方程。

【练习】:课后1、2两题(指定学生口答)

1.方程的解与方程的根:

①方程的解:

能使方程左、右两边的值相等的未知数的值叫做方程的解;

②一元方程:

只含有一个未知数的方程称为一元方程;

一元方程的解也叫做方程的根。

2.一元一次方程:

只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。

例检验下列各数是不是方程7x+1=10-2x的解:

⑴x=1;⑵x=-2。

解:⑴将x=1分别代入方程的左、右两边,得

左边=71+1=8,

右边=10-21=8,

∵左边=右边,

x=1是方程7x+1=10-2x的解。

⑵将x=-2分别代入方程的左、右两边,得

左边=7(-2)+1=-13,

右边=10-2(-2)=14,

∵左边右边,

x=-2不是方程7x+1=10-2x的解。

三、作业:

课后习题

同步练习

2021七年级数学优质课教案2

〖教学目标〗

1.观察生活中的大量实物,认识基本的几何体。

2.通过比较不同的物体学会观察物体间的不同特征,体会几何体的联系和区别。

〖教材分析〗

本节课的主要内容是感受丰富多彩的图形世界,并在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱和球。

本节课的重点是:通过具体情境认识一些基本的几何体;能用自己的语言描述几何体的特征。

本节课的难点是:观察身边的事物,用数学的眼光来评价它们;借助所了解的图形,归纳出几何体的分类。

〖教学设计〗

(一)情境引入

1.让学生回忆小学学过的几何图形(立体图形):圆柱、圆锥、正方体、长方体、棱柱、球等,并展示实物教具和模型,让学生回忆这些几何体的形状。

2.请学生自己画一些立体实物(比如杯子等)。

3.组织学生观察校园里哪些物体与我们学习过的几何图形形状类似,然后鼓励学生将自己观察到的结果说出来(例如,学校里的垃圾桶是圆柱体,花池是六棱柱),由此让学生感觉到,正是这些基本图形构成了我们生活的空间,从而引出新课――生活中的立体图形(板书)。

(二)观察室

1.课件展示一些建筑物照片(如埃及金字塔、桂林香江饭店、英国白金汉宫等),让学生观察每幅图,找到与自己熟悉的几何体形状类似的物体(让学生上台说明,看谁找得最多最准,让学生说说哪些建筑物好看,以培养学生认真观察、大胆发言的良好习惯)。

2.展示课本第2页各图(课件),让学生仔细观察,并回答又有哪些与熟悉的几何体形状类似的物体。

3.展示课本第3页上图,让学生认真观察,然后分小组讨论,并回答下列问题:

(1)图中哪些物体的形状与长方体、正方体类似?

(2)图中哪些物体的形状与圆柱、圆锥类似?

(3)请找出图中与笔筒形状类似的物体。

(4)请找出图中与地球形状类似的物体。

(三)活动室

1.说一说:课件展示正方体、长方体、圆柱、圆锥、棱柱、棱台、球的几何透视图,让学生用自己的语言描述这些图形的特征。

2.议一议:课件展示棱柱和圆柱,分组讨论这两种几何体具有哪些相同点和不同点,在分组讨论交流中形成对棱柱比较全面的认识。

(四)竞赛室

赛一赛:找出生活中哪些物体的形状类似于棱柱、圆柱、圆锥和球。

(分组比赛,看哪一组举的例子多。如机器零件的六角螺母的形状类似于棱柱,圆桶形茶叶盒的形状类似于圆柱,有些冰淇淋的形状类似于圆锥,篮球、足球的形状类似于球,台灯的灯罩的形状类似于圆台。)

(五)训练室

将下列几何体分类,并说明理由。(学生上台动手将这几种几何体分类,让学生试着说明归类的理由。无论学生说什么教师都应用鼓励的目光让学生说出自己的答案。)

(六)探究室

你喜欢什么样的几何图形?为什么?如果你是一位小动物的房屋建筑师,你将建造一个什么形状的建筑物给你所喜欢的小动物居住?请把所设计的建筑物的设计草图画出来,并给小屋起个好听的名字,再用一句话来说说你们的设计(分小组)。

从学生喜爱动物的特点出发,不仅能让学生体会到生活中处处有数学,而且让学生懂得关爱,增强环保意识,同时也可以激发学生的学习兴趣,发展学生的表达能力及创新能力。

(七)小结

提问:本节课学到了什么?认识了什么图形?你发现了你的周围都存在着数学吗?

根据学生的回答,总结出:现实生活中原来有如此多的几何体,数学就在我们身边,我们也学会用数学的观点来认识生活,体会生活中的几何美,并通过学生对“美”的理解,简单地区别不同的几何体。

(八)作业

1.习题1.1。

2.动手做一个你认为在生活中比较实用的几何体。

3.做一个边长为10cm的正方体,做好后请保留。(在后面的学习用 到)

2021七年级数学优质课教案3

教学目的

1、使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

2、通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。

重点、难点

判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。

教学过程

一、知识回顾

问题1:轴对称图形的定义是什么?

它是判断图形是否是轴对称图形的依据。

问题2:是否会画轴对称图形的对称轴?

找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

问题3:轴对称图形对称点的连线与对称轴有什么关系?

轴对称图形对称点的连线被对称轴垂直平分。

问题4:线段垂直平分线、角平分线具有什么性质?

线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

问题5:等腰三角形有什么性质?

等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。

问题6:如何判断三角形是等腰三角形?等边三角形?

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。

二、例题

1、下列图案是轴对称图形的有()

A、1个D。2个C。3个D。4个

2、如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么

(1)∠DEF与∠DFE相等吗?为什么?

(2)OE与OF相等吗?为什么?

三、巩固练习

如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″。求△BCD的周长和∠DBC度数。

四、课堂小结

通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题。

2021七年级数学优质课教案4

有理数的大小

【学习目标】

1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.

2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.

【学习重点】

利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.

【学习难点】

两个负数大小的比较.

行为提示:创景设疑,帮助学生知道本节课学什么.

行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.

教会学生落实重点.

情景导入 生成问题

旧知回顾:

1.什么是绝对值?

答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.

2.正数、负数、0的绝对值分别是什么?

答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

自学互研 生成能力

知识模块一 用数轴比较有理数的大小

阅读教材P14~P15的内容,回答下列问题:

问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?

答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.

方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.

学习笔记:

行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.  典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是( A )

A.a>b>c      B.a>c>b

C.b>c>a D.c>b>a

仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( C )

A.-aC.a<-1<-a D.a<-a<-1

仿例2:把下列各数在数轴上表示出来,并用“<”连接各数.

-1.5,-0.5,-3.5,-5.

解:将这些数在数轴上表示出来,如图:

从数轴上可看出:-5<-3.5<-1.5<-0.5.

知识模块二 用法则比较有理数的大小

阅读教材P15的内容,回答下列问题:

问题:两个负数怎样比较大小?

答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.

典例:比较大小:

(1)-2.1<1;      (2)-3.2>-4.3;

(3)-12<13; (4)-14<0.

仿例1:比较-12、-13、14的大小结果正确的是( A )

A.-12<-13<14         B.-12<14<-13

C.14<-13<-12 D.-13<-12<14

仿例2:比较下列各对数的大小:

(1)-(-3)与|-2|;

解:∵-(-3)=3,|-2|=2,

∴-(-3)>|-2|;     (2)-(-6)与|-6|.

解:∵-(-6)=6,|-6|=6,

∴-(-6)=|-6|.

变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6.

交流展示 生成新知

1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.

2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.

知识模块一 用数轴比较有理数的大小

知识模块二 用法则比较有理数的大小

检测反馈 达成目标

【当堂检测】见所赠光盘和学生用书

【课后检测】见学生用书

课后反思 查漏补缺

1.收获:________________________________________________________________________

2.困惑:________________________________________________________________________

2021七年级数学优质课教案5

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

热门排行

《近似数》七年级数学教案

近似值是接近标准、接近完全正确的一个数字。 通常,取近似数的方法有四舍五入法、退一法和收尾法(进一法)等下面由我为大家整理了关于《近似数》七年级数学教案,供大家参考。《近似数》七年级数学教案1学习目标: 理解精确度和有效数字的意义;准确地按要求求一个数的近似数。学习重点:近似数、精确度和有效数字的意义,学习难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.学习过程:一、自主学习准确数与近似数:(1)初一(4)班有42名同学,数42是 数;(2)每个三角形

北师大版七年级下册数学教案

目前,信息化发展不断加快,学生面对的信息量越来越大。数学已经渗透到多个领域,生物学、军事学、经济学、社会学等领域的发展均离不开数学。这次小编给大家整理了北师大版七年级下册数学教案,供大家阅读参考,希望

新疆版初一数学优质教案

兴趣教学能激活学生思维,让跳跃的思维在课堂中流行,让数学流行起来,让智慧飞扬起来。让我们一起来学习数学吧!这次小编给大家整理了新疆版初一数学优质教案,供大家阅读参考,希望大家喜欢。新疆版初一数学优质

七年级数学的沪科版教案

七年级的数学跟小学的内容和学习方法都不一样,学习的学习只是在掌握了公式,模板以后就能取得好成绩,但初中数学学习却渗透了函数的思想,开始涉及到逻辑思维的思想。今天小编在这给大家整理了一些七年级数学的沪科

七年级数学数轴教案五篇

各个学科课程都有各自的特点,规定了原点,正方向和单位长度的直线叫数轴。其中,原点、正方向和单位长度称为数轴的三要素。下面就是小编整理的数轴教案,希望大家喜欢。数轴教案1一、教学目标【知识与技能】了解数轴的概念,能用数轴上的点准确地表示有理数。【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。【教学难点】数形结合的思想方法。三、教学过

《绝对值》七年级数学教案

绝对值用是指一个数在数轴上所对应点到原点的距离,用“||”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。下面由我为大家整理了关于《绝对值》七年级数学教案,供大家参考。《绝对值》七年级数学教案1一、学习与导学目标:知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。二、学程与导程活动:A、创

数学七年级苏教版平面图形的认识教案

直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆都是几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。今天小编在这给大家整理了一些数学七年级苏教版平面图形的认识教案,我们一

《正数与负数》七年级数学教案五篇

正数是数学术语,比0大的数叫正数,0本身不算正数。正数与负数表示意义相反的量。本单元是在学生已经认识自然数、小数和分数的基础上编排的,是数的认识的又一次扩展,下面就是小编整理的《正数与负数》教案,希望大家喜欢。《正数与负数》教案1教学内容:教材2-4页例题及“做一做”的内容。教学目标:1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。3、情感态度与价

青岛版初一数学的优秀教案

初中数学注重解决实际问题,只有在理解的基础上才能更好地解决问题,区别于小学的机械答题方式。这次小编给大家整理了青岛版初一数学的优秀教案,供大家阅读参考,希望大家喜欢。青岛版初一数学的优秀教案1教学

七年级数学《相反数》教案五篇

相反数,指数值相反的两个数,其中一个数是另一个数的相反数。你知道相反数的教案怎么编写么?下面就是小编整理的《相反数》教案,希望大家喜欢。《相反数》教案1教学目标1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3, 体验数形结合的思想。教学难点 归纳相反数在数轴上表示的点的特征知识重点 相反数的概念教学过程(师生活动) 设计理念设置情境引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类4, -2,-5,+2允许学

3957